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Switching manifold approach to chaos synchronization
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In this Rapid Communication, a switching manifold approach is proposed for synchronizing chaos. The
effectiveness of this nonlinear control strategy is demonstrated by both theoretical analysis and numerical
simulations on two typical chaotic systems: the Lorenz and the modified Lorenz systems.
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PACS number~s!: 05.45.2a, 89.70.1c, 43.72.1q
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I. INTRODUCTION

The problems of controlling and synchronizing chaos c
be formulated under a unified framework@1#. These two sub-
jects have been intensively studied in the last decade@1,2#.
Chaos synchronization has many potential applications in
ser physics, chemical reactor, secure communication,
medical science, and so on@3#.

It is known that linear or linearized control methods a
not always possible for controlling nonlinear systems, a
nonlinear control methods prove to be often necessary, e
cially for chaotic systems@3,4#. Some nonlinear control tech
niques have even been extended to synchronization of hy
chaos and spatiotemporal chaos@4,5#. One typical method is
the variable structure~or sliding mode! control, which has
some successful applications for chaotic systems@6#.

In this Rapid Communication, we further extend o
method @6# to performing synchronization of two chaot
systems with different initial conditions. In addition to the
retical analysis, two Lorenz systems and two modified L
renz systems are simulated to demonstrate the effective
of this method.

Consider twon-dimensional chaotic systems,

ẋ5F~x!, xPRn, ~1!

ẏ5F~y!1G~x!u, yPRn, uPRm, ~2!

where F is a vector-valued nonlinear function satisfyin
some defining conditions, andG(x) is an n3m matrix-
valued nonlinear function to be determined along with
controlleru5u(x,y).

The goal here is to force the two coupled systems to
synchronized even if they have different initial condition
As usual, we call system~1! the master system, and syste
~2!, the slave system.

The basic controller design principle is outlined as f
lows. To start with, a switching manifold containing the d
sired chaotic target~for synchronization! of the master sys-
tem, is found. Then, using a nonlinear control strategy,
PRE 591063-651X/99/59~3!/2523~4!/$15.00
n

a-
o-

d
e-

er-

-
ss

e

e
.

e

state of the slave system is driven to move toward the m
fold from any nearby place. In much the same way, anot
switching manifold is obtained for a chaotic state nearby
target, and the trajectory is forced to slide onto it. The co
trol law so designed can be in a very simple nonlinear for
The effectiveness of such a control strategy can be analy
by both theoretical analysis and numerical simulation,
demonstrated below.

II. ANALYSIS OF SWITCHING MANIFOLDS

To illustrate the proposed control method and design p
cedure, it is especially convenient to use examples. The w
known Lorenz system and its modified version@7# are taken
as examples for this purpose.

Example 1. Consider two coupled Lorenz systems, wh
the first system is given by

ẋ152s~x12x2!

ẋ25rx12x22x1x3 ~3!

ẋ35x1x22bx3 ,

and the second one has the same form, withxi being replaced
by yi ,i 51,2,3, respectively, which are assumed to have t
sets of different initial conditions.

Example 2. Consider two coupled modified Lorenz sy
tems@7#, in which the two product termsx1x3 and x1x2 in
Eq. ~3! are replaced by 20x1x3 and 5x1x2 , respectively, with
two different initial conditions.

To simplify our presentation, we only analyze Example
here. By adding a controller into the right-hand side of t
first equation of the slave system, we have

ẏ152s~y12y2!1u. ~4!

Then, by subtracting Eq.~3! from the slave system, with the
first equation being replaced by Eq.~4!, and by defining the
synchronization error as
R2523 ©1999 The American Physical Society
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ei5yi2xi , i 51,2,3,

we obtain the synchronization error dynamics,

ė152s~e12e2!1u

ė25re12e22e1~x31e3!2e3x1 ~5!

ė35e1~x21e2!1x1e22be3 ,

where, compared with Eq.~2!, G5(1,0,0)Á. Moreover, let
the controller be

u5ueq1u0 , uu0u<e, ~6!

where ueq and u0 are to be determined, ande.0 is the
allowable bound for the control inputs.

For synchronization purpose, as mentioned above,
first step is to find a suitable switching manifold, and then
design an effective nonlinear control to drive the error st
to move toward this stable manifold. In so doing, the er
state will eventually approach zero along~or near! the mani-
fold. Select the manifold to be in the form

s5s~e!, ~7!

which has to be specified such that~i! it contains the target
e50, and~ii ! ] ṡ/]uÞ0 almost everywhere~neare50).

For the error dynamical system~5!, the desired manifold
~usually not unique! can be taken as

s~e!5be32e1
250, ~8!

whereb is a positive constant. For this chosen manifold, it
easy to verify that the two conditions,~i! and ~ii ! described
above, can be satisfied: first,e50 is contained in the mani
fold; second, the vectorG5(1,0,0)Á is transversal to the
manifold at the pointe50. This is because

ṡ5b@e1~x21e2!1x1e22be3#22e1@2s~e12e2!1u#,
~9!

which implies

FIG. 1. Synchronization betweeny1 and x1 after a transient
~2000 steps! for Example 1 with different initial conditions con
trolled by the controller~13! with ueq5” 0.
e
o
e
r

] ṡ/]u522e1 , ~10!

and this does not vanish along manifold~8! except when
e150. Therefore, whene1Þ0, ṡ can be directly controlled
by u.

Next, we study the dynamical behavior of the error sy
tem ~5! when it is confined on the manifold by the controll
u.

Remark 1. IfG is taken as (0,1,0)Á, then the controlled
Lorenz system becomes

ė152s~e12e2!

ė25re12e22e1~x31e3!2e3x11u ~11!

ė35e1~x21e2!1x1e22be3 .

In this case, a switching manifold can be selected as

s~x!5be32e2
250. ~12!

The manifolds~8! and ~12! can be used simultaneously fo
the two examples studied in this paper, as shown below
numerical simulations.

FIG. 2. Total dynamical errore5( i 51
3 ei for Example 1 with

different initial conditions controlled by the same controller~13!, as
in Fig. 1. In this figure,~a! ueq50; ~b!ueq5” 0. ~All of ordinate is
dimensionless.!
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III. CONTROLLER DESIGN PROCEDURE

Recall that the task of control is to forces in Eq. ~9! to
tend to zero. Therefore, the controller design must foll
this principle: to drive all the error states, typically tho
nearby the manifold, to converge onto the stable manifo

Consider Eq.~9! again. If all the variablese1 ,e2 ,e3 can
be directly measured, then the control law can be chose
the form of Eq.~6!, in which ueq is designed to ensureṡ
50 whenevers50. Intuitively, ueq plays the dominant con
trol, wheneveru0 fails to achieve synchronization alone. O
serve that2b2e352bs2be1

2 , so that Eq.~9! can be rewrit-
ten as

ṡ5b@e1~x21e2!1x1e2#2bs2be1
212se1~e12e2!22e1u.

Based on this, it is easy to see that we can use

ueq5~s2b/2!~e12e2!

and

u05e sgn@e1s#;

that is,

u5~s2b/2!~e12e2!1e sgn@e1~be32e1
2!#. ~13!

To this end, the controlled system~9! with controller ~13!
becomes

ṡ52bs2e sgn@e1s#1d~ t !, ~14!

whered5b(e1x21x1e2) may be viewed as a disturbanc
Because this type of controller is robust, such disturba
can be attenuated, as well documented in the conventi
nonlinear control literature.

Remark 2. Even ife50 is used in the control law
namely,

u5ueq5~s2b/2!~e12e2!, ~15!

FIG. 3. Synchronization betweeny1 and x1 after a transient
~2000 steps! for Example 2 with different initial conditions con
trolled by the controller~13! with ueq5” 0. ~Ordinate is dimension-
less.!
.

in

e
al

synchronization is still possible. In this case, however,
robustness enhanced by the additional control termu0 is gen-
erally lost. With a suitablee.0, the convergence rate can b
significantly improved.

Remark 3. If system~11! is considered along with the
manifold ~12!, the following control law works as well:

u5ueq1e sgn@e2~be32e2
2!#, ~16!

ueq5e1@e32~r2b/2!#1~12b/2!e2 .
~17!

This is similar to the controllers~13! and ~15!.
Remark 4. Ifueq50 is used in the controller, then th

above control task fails, at least in our simulations.
Remark 5. If only a simple linear feedback,u52kei ,k

.0,i 51 or 3, is used, the above control task also fails in o
simulations.

IV. SIMULATION AND DISCUSSION

The Lorenz system has a familiar chaotic attractor for
parameters sets510,b58/3, andr528, whereas the modi
fied Lorenz system has a chaotic attractor fors516, b54,
andr545.92.

FIG. 4. Total dynamical errore5( i 51
3 ei for Example 2 with

different initial conditions controlled by the same controller~13!, as
in Fig. 3. In this figure,~a! ueq50; ~b! ueq5” 0. ~All of ordinate is
dimensionless.!
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To demonstrate the effectiveness of the developed con
method, we have studied various numerical simulations
synchronization between two identical Lorenz systems~see
Examples 1 and 2! with different initial conditions.

Figure 1 shows the dynamical behavior of the synchro
zation betweeny1 and x1 after a transient~2000 steps!
for Example 1 with different initial conditions:x(0)
5(0,21,0)Á andy(0)5(0.05,20.05,0.01)Á. The controller
is given by Eq.~13!, namely,

u5ueq1u05~s2b/2!~e12e2!1e sgn@e1~be32e1
2!#.

Figure 2 shows the total dynamical errore5( i 51
3 ei , as-

sociated with Fig. 1. In Fig. 2~a!, ueq50; in 2~b!, ueq5” 0.
Figure 3 shows the synchronization behavior betweeny1

and x1 after a transient~2000 steps! for Example 2 with
different initial conditions:x(0)5(0.01,20.01,0.05)Á and
y(0)5(0.05,20.05,0.01)Á. The controller is also given by
Eq. ~13!.
os

,
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Figure 4 shows the total dynamical errore5( i 51
3 ei , as-

sociated with Figure 3. In Fig. 4~a!, ueq50; in 4~b!, ueq
50. Simulation results using controller~16! for Examples 1
and 2 are very similar to Fig. 4.

It is clear from Figs. 1–4 that these numerical simulatio
indeed have verified that the above theoretical analysi
correct and our nonlinear control strategy is effective. Mo
specifically, using either controller~13! or ~16!, precise syn-
chronization is achieved for the two examples. However,
control fails for synchronizing these two coupled systems
shown in Figs. 2~b! and 4~b!, if ueq50 is taken in Eq.~13! or
~16!. The control also fails if only a simple linear feedbac
u5kei ( i 51 or 3! is used. This demonstrates the advanta
of the proposed control strategy. The main idea and
method of this Rapid Communication can be extended
other chaotic/hyperchaotic systems in principle.
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